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Abstract

The standard analysis of modulational diffusion for general
nonlinearities is qualitatively summarized, and compared
10 the particular case of a beam-beam simulation with two
kicks per tumn, plus tune modulation. A simulation with
realistic Tevatron parameters shows amplitude growth over
long timescales of order 10* synchrotron periods.

The simulated amplitude growth is qualitatively similar
to the predictions of modulational diffusion, showing large
discrete steps in the evolution speed as the tune distance
from the nearest 2-D weak coupling resonance is varied.
However, the simulation shows a fundamental difference
in that the observed amplitude growth is approximately ex-
ponential in time, and not approximately root time as pre-
dicted in the standard analysis. Possible reasons for this
and other discrepancies are briefly discussed.

1 MODULATIONAL DIFFUSION

Models of 1-D nonlinear motion in a hadron collider have
timescales of hundreds of turns. When externally driven
tune modulation is added, “thick layer” chaos may en-
sue [1, 2, 3]. If chaos is present in such a 1.5-D model,
the typical timescale is of order a hundred modulation pe-
riods. Synchrotron oscillations generate pseudo-external
tune modulation, coupling through non-zero chromaticity.
However, even a hundred synchrotron periods amount to
only a few seconds, far shorter than the empirically ob-
served timescales of the order of hours [4, §, 6, 7].

Amol’d “thin layer” diffusion occurs in 2-D models,
with very long timescales of hundreds of millions of turns,
but it is generally conceded to be too weak to be a signifi-
cant practical concern {8, 9, 10]. Of the classical catalog of
diffusion mechanisms, only modulational “thick layer” dif-
fusion in 2.5-D is strong enough and long enough in time
scale to be a serious candidate for a successful description
of the evolution of hadron collider bunch distributions. Un-
fortunately, even modulational diffusion has serious defi-
ciencies in explaining the basic features of very simple 2.5-
D beam-beam simulations.

A general “standard analysis” of modulational diffusion
is well reported in the literature, complete with analytical
and quantitative results [9, 10, 11]. These results are not
discussed in detail here. Instead, the general characteristics
of modulational diffusion are described, and the require-
ments for its existence are summarized.

1.1 Thick layer chaos in 1.5-D

First, consider nonlinear motion in only the horizontal di-
mension, in the vicinity of a one-dimensional resonance,

and under the influence of tune modulation, described by

Q: = Qo + qSiD(27fQMt) 1)

Here t is time measured in machine tumns, Q) is the unper-
turbed horizontal base tune, ¢ is the tune modulation depth,
and @)ps is the tune modulation tune. Depending on the
location in tune modulation parameter space (q, Q). the
motion falls roughly into one of four dynarnical phases —
“chaos”, “strong sidebands”, “amplitude modulation”, ar
“phase modulation” [12, 13, 14].
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Figure 1: Dynamical phases in the tune modulation param-
eter plane (g, Qr), for a resonance of order N = b.

The boundaries between these dynamical phases are
smoothly drawn in Figure 1. In this figure both ¢ and Q as
scale with the parameter @, the “island tune” correspond-
ing to small oscillations around the stable fixed point at the
center of a resonance island. The straight line limits of the
smooth boundaries in Figure 1 are consistent with Hamilto-
nian approximations which are valid when ¢ and/or @ s are
incommensurate with ();. From left to right these straight
line segments are
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where N is the order of the 1-D resonance. The curved
portions of the boundaries are drawn with some artistic li-
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zense. To put it simply, dynamical stability is vulnerable to
ume modulation tunes near to the island tune [15].

Simulations show that, although the true boundaries
lave a detailed complex structure, nonetheless the smooth
boundaries are approximately correct [13]. Most impor-
unt of all, simulations confirm the universal dependence
of the boundaries on only three configuration parameters:
4/Qr), (Qm/Qr), and N. The details of the nonlinearity
—its distribution and its source (beam-beam or magnetic) —
do not matter except through the island tune, Q.
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Fgure 2: The transition to “thick layer” chaos in horizontal
phase space when tune modulation is turned on in the pres-
eace of a (), = 3/5 resonance. These results come from a
smulation of the Tevatron with two beam-beam collisions
aof strength £ = 0.0005, offset by Az = 0.10.

A thick layer of bounded chaos is formed when the tune
modulation parameters (¢,Q »r) lie in the dynamical phase
kbeled “chaos” in Figure 1. This is illustrated in Figure 2.
k typically takes a particle of order a hundred modulation
periods to move all the way across the chaotic layer.

The classical general model of modulational diffusion
requires a thick chaotic layer in (say) horizontal phase
space, to act as a noise source for the vertical motion. It
aiso requires that the vertical motion is coupled to the hor-
irontal through a weak 2-D coupling resonance. The stan-
dard analysis then proceeds by reducing the vertical motion
wa random walk in which a test particle tends to diffuse to
large vertical amplitudes.

1.2 The modulational diffusion coefficient, D

Chirikov [11] and Lichtenberg and Lieberman [10] discuss
2 standard Hamiltonian for modulational diffusion

H = %JZ — kcos[f; + Asin Qt)

+ %Jj — ecosff; — 6] (5)
where (J, 6) are the action-angle variables in each plane.
Analogies are easily drawn between the parameters of this
sandard model and those appropriate to accelerators, if ¢ in
Equation 5 is interpreted as turn number. For example, & <
3rQ)? (resonance strength), A = (¢/Q ) (modulation
srength), and @ = (27Q ) (modulation frequency).

The standard analysis predicts that motion scales as the

square root of time, and defines a local diffusion coefficient

_ an)
D=

where AJ, is the vertical action excursion and T is the
elapsed time. The ensemble averaging should be performed
over a time T short compared to the vertical diffusion
time (so that AJy/J, is small) but long compared to the
timescales of horizontal motion across the thick chaotic
band (of order a hundred synchrotron periods).
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Figure 3: Modulational diffusion resonance structure. The
resonance separation is parameterized by a, which is the
horizontal tune distance AQ, scaled by the primary reso-
nance half width — the tune modulation depth q.

It turns out that the diffusion coefficient D depends
strongly on o, the proximity of the weak 2-D resonance.
The test particle has an instantaneous tune at “A” in Fig-
ure 3, deep in a thick layer of horizontal chaos around a
primary horizontal resonance which is +¢q wide. A single
weak coupling resonance lies a distance AQ, away, a dis-
tance which is measured in units of the primary resonance
half width A

= 28 )
q
After a tour de force derivation including a number of as-
sumptions and approximations, the standard analysis pre-
dicts that D(a) drops by about 16 orders of magnitude as
a is increased from O to about 7, in a dramatic series of
sudden descents at odd integer values of a.



The literature shows that there is good (although not per-
fect) agreement between the analytical prediction for D(«)
and simulation results obtained by numerical integration of
the differential equations of motion [10, 11]. One free pa-
rameter is adjusted to optimize the agreement. The pre-
dicted “piateaux and ciiffs” are cieariy visibie.

Unfortunately this is not a realistic scenario for a hadron
coilider — not even a smaii fraction of a bunch population
would (deliberately) be placed in the middie of a strong
chaotic resonance! More reievant to iong term coliider be-
havior is the scenario of a test particle at location “B” in
Figure 3 — it is never possibie for aii of the bunch popuia-
tion to avoid all weak 2-D resonances. In this scenario the
parameier a wouid measure the proximity of the primary
resonance, and not the weak coupling resonance. Also it is
often not realisiic io assume thai there are only iwo simpie
resonances in the tune vicinity of a test particle.

Do the striking plateaux and cliffs in D{c) aiso oc-
cur when discrete nonlinear maps representing turn-by-turn
collider motion replace continuous differential equations?

To answer this question, this paper turns to a simple real-
istic modei of beam-beam coiiisions in the Tevatron. How-
ever, the question is valid for either magnetic or beam-beam
poniineariiies. Noie that ihe preceding discussion of mod-
ulational diffusion has been completely general without
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specifying the particular source of the noniinearity.

2 BEAM-BEAM NONLINEARITIES
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date for a quantitative analysis of 2.5-D amplitude growth,
because it is mathematically well behaved {16]. In particu-
lar:

o The beam-beam kick goes like 1/R at large ampli-
tudes, so the tune shifts and the resonance strengths
all go to zero.

o At all amplitudes the quantities of interest — the detun-
ing, resonance strengths, island widths, and the island
tunes, et cetera ~ are simply linear in the small quan-
tity £, the beam-beam tune shift parameter.

e Analytical expressions can be written for the quanti-
ties of interest, at all amplitudes.
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Itis given by

Qi(J) =

where the resonance order N is even, J is the action at
the resonance, Vi (J) is the “resonance width function”,
and U"(J) is the second derivative of the function U(J)

NE ([Vn (D) U ()2 ®)

with respect to J. These two function are given, in turn, by
integrating the following expressions

~()YSew (5 ) vz (5) O

% [1 — exp (é) fo (é)]

where I/, and Iy are modified Bessel functions.
The Hamiltonian which approximately describes the mo-
tion near the Q = p/N beam-beam resonance is

Vn(J)

U'(J)

(10)

2 _ (Qo~ =) + EU(J) + EVn(J)cos NG (i)

Vi

2|~c

where () is the base tune [16]. It is straightforward to ex-

tend this formalism to include include odd order resonances
driven by (small) closed orbit offsets. It is also possible to

extend the analytical description from 1-D to 2-D, although
not without some pain.

3 A SIMPLE REALISTIC BEAM-BEAM
SIMULATION

There were two strong beam-beam interactions on every

tirn during the 1009 rmin of tha Farmilah Tevatron — one at
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the CDF experiment and one at the DO experiment — each

with a strenoth of F o 0.005 [‘71 Unwanted collisions at
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other locations were avoided by the use of electrostatic sep-
arators. Typical operating parameters are listed in Table 1.
The working point caused the tune footprint to lie between
7th and 5th order resonances, straddling 12th order sum

resonances, as shown in Figure 4.

Quantity Label Value
Base tunes Qz0,Qyo  20.586,20.575
Chromaticities Xr, Xy 30
RMS momentum spread op/p 0.0003
Synchrotron tune QM 0.00078
Beam-beam parameter £ 0.005

Table 1: Typical Tevatron operational parameters at 900
GeV in the 1992 collider run.

The weak-strong tracking program EVOL was used for
all simulations [18]. The beam-beam interactions assumed
round Gaussian beams of transverse size o, so that the hor-
izontal beam-beam kick was

—4r €2z + Ax _p2
Az = ’3‘6 ( = )[ —e R /2] (12)

Here z and z’ are the horizontal displacement and angle,
[* is the beta function at the interaction point (the same in
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Figure 4: The tune plane for 1992 Tevatron parameters,
showing the 5th, 7th, and 12th order resonances. The nom-
inal working point is indicated by a cross, and the beam-
beam footprint for £ = 0.005 at two collisions is shown.
Footprint contours of constant ampiitude range from 0.1¢
to 5.1¢ in 1o increments.

both planpc), and R is the distanc
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opposing beam scaled to the beam size

q

(13)

A small horizontal closed orbit offset of Az = 0.1¢
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luded at the collision points, so the Sth order reso-
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1992 run, collision offsets of this magnitude were consid-
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A tune modulation depth of ¢ = 0.001 was used, present

nly in the horizontal piane, corresponding o a horizon-
chromaticity of about 3 units combining with an off-
omentum amplitude of Ap/p ~ 3 x 107%, a realistic

value for the Tevatron.
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4 SIMULATION

The maximum vertical amplitude was recorded for test
particles launched with initial amplitudes (a,,a,) =
(3.0,0.1)0, for tracking times ranging from 10 to 10* syn-
chrotron periods [13]. This is as long as a few minutes in
the Tevatron.

4.1 Tune plan scans

First, a tune plane scan was performed over a mesh on the
tune plane diagram of Figure 4, giving the results shown in
Figure 5. The strongest vertical amplitude growth is seen
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Figure 5: Maximum vertical amplitudes of single particles
with initial amplitudes (a., ay) = (3.0, 0.1)0, tracked for
10, 102, 103 and 10* synchrotron periods.



near the intersection of the Q, = Q. and Q> = 20.6 res-
onances. Relatively modest growth is seen elsewhere, for
example in the vicinity of the 3¢); +2Q, = 103 resonance.
The range of timescales observed is qualitatively consistent
with that predicted for modulational diffusion.

Vertical amplitude growth is almost completely absent
with the tune modulation turned off (¢ = 0), except in the
vicinity of the @y = Q. linear coupling resonance. This is
conclusive evidence that tune modulation drives amplitude
growth on these timescales.

Careful observation reveals that the resonances visible
in Figure 5 are slightly displaced from their nominal loca-
tions. This is due to the “detuning” of the instantaneous
tunes (Q, Qy) from the base tune values (Qz0, Qyo) used
as axes in the figure. The size of the tune shift for a test
particle with (a., ay) ~ (3.0,0.1)o can be estimated from
the tune footprint shown in Figure 4.

Tune variation with amplitude is not included in the stan-
dard modulational diffusion Hamiltonian of Equation 5.
Also, the variation of resonance strength with both ampli-
tudes, which is explicitly present in the beam-beam case, is
not present in the modulational diffusion model.

4.2 Primary resonance scan

A second scan was performed by setting Q0 = 20.597,
and decreasing the vertical base tune Qo to gradually in-
crease o, the distance to the nearest coupling resonance.
This value of ()0 places a test particle in the center of a
thick layer of chaos surrounding the @), = 20.6 resonance,
a necessary condition for modulational diffusion predic-
tions to apply. Note that the nearest coupling resonance
4Q, + Qy = 103 is not directly visible in Figure 5.

Figure 6 shows the vertical amplitude evolution for 3
quite different values of « over times as long as 6 x 103
synchrotron periods. Tracking was stopped when the ver-
tical amplitude reached 1 o, in order to avoid complicating
the interpretation of the results with amplitude dependent
effects. For each value of o the evolution is plotted, side
by side, on both log-log and log-linear scales. The verti-
cal amplitude clearly evolves like an exponential of time
(ay ~ expt), and not like root time (ay ~ ¢/2) as pre-
dicted by the standard modulational diffusion model, or by
standard diffusion phenomenology.

Figure 7 shows exponential growth rate data from simu-
lations over a range of a values. In each case the exponen-
tial growth rate vy was extracted by fitting the the raw data
to a curve

ay(t) = 0.10 /T (14)

where T is the synchrotron period. Two distinct plateaux
are visible in Figure 7, separated by sudden drops at values
a = 2 and o = 3, each of about 2 orders of magnitude.
In contrast, the standard model predicts cliffs only at odd
integer values of o.

The growth rate v has natural units of inverse syn-
chrotron periods, since the natural time unit is one mod-
ulation period. It is therefore inappropriate to include data
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Figure 6: Exponential vertical amplitude growth for parti-
cles launched within a horizontal chaotic band. The base
tune is Q.0 = 20.597 in all cases, so that the horizon-
tal motion sits in the middle of the @}, = 20.6 resonance.
Note the different timescales.

sets with fast growthrates v > 1, limiting o to values larger
than about 2. The maximum value of o & 4.5 is given by
the availability of cpu time, and human patience.
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5 CONCLUSIONS
The analytical theory of modulational diffusion has been

invacticatad hv comnaring its nradictione with the regnlte
investigated by comparing 1ts predictions with the resuills

of a simple simulation of beam-beam behavior in the Teva-

tron
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tens of thousands of synchrotron periods, or several min-
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No particles sit in a chaotic layer around the ), = 20.6
resonance under nonmal operating conditions in the Teva-
tron. The strongest primary resonance which in practlce
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The rate of simulated vertical amplitude growth depends
on the proximity of a nearby coupling resonance, and
shows a structure of “plateaux and cliffs” similar to mod-
ulational diffusion pl‘a.uCLiOﬁS However, the gTO'v'v‘ux is ex-
ponential in time, and not root-time as predicted.

Resonance strengths in the standard modulational diffu-
sion model are not amplitude dependent. It has been sug-
gested [19] that the exponential growth seen in the beam-
bearn simulation may be due to the variation of primary or
coupling resonance sirengih as the veriical ampliiude in-
creases from (.10 to 1.0c. This seems unlikely, in the re-
stricted range of horizontal and vertical amplitudes which
were tracked, but it remains a viable possibility.

The 2.5-D beam-beam interaction (with tune moduia-
tion) is analytically quite tractable, in addition to being a
simpie probiem of practicai concern. it may be possibie
to extend the standard analytical treatment of modulational
diffusion to this case, and in doing so to inciude the impor-
tant features of detuning, and resonance strength variation
with amplitude.

An even simpler 2.5-D collider model, that of 3 oc-
tupoies pius i decapoie, has aiready been used for other
tune modulation studies [13]. The octupoles are arranged
to provide linear detuning with action without driving any
resonances, while the decapole drives a resonance with no
detuning. This model is more artificial than the beam-beam
model, but it is also more tractable analytically (at modest
amplitudes). It is aiso extremely fast in simulation.

The arena of 2.5-D diffusion is ripe for further study, in
an attempt to reconcile analytical predictions with simpie
simulations. The ideal simple simulation would bear some
relevance to contemporary — and future — hadron collider
performance.
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